
The Dangers of Failure Masking in Fault-Tolerant
Software: Aspects of a Recent In-Flight Upset Event

C. W. Johnson*, C. M. Holloway†

* Dept. of Computing Science, University of Glasgow, Glasgow, G12 9QQ, johnson@dcs.gla.ac.uk
† NASA Langley Research Center, 100 NASA Road, Hampton VA 23681-2199, U.S.A.,

c.m.holloway@nasa.gov

Keywords: accident, software, fault-tolerance, maintenance

Abstract

On 1 August 2005, a Boeing Company 777-200 aircraft,
operating on an international passenger flight from Australia to
Malaysia, was involved in a significant upset event while flying
on autopilot. The Australian Transport Safety Bureau’s
investigation into the event discovered that “an anomaly existed
in the component software hierarchy that allowed inputs from a
known faulty accelerometer to be processed by the air data
inertial reference unit (ADIRU) and used by the primary flight
computer, autopilot and other aircraft systems.” This anomaly
had existed in original ADIRU software, and had not been
detected in the testing and certification process for the unit. This
paper describes the software aspects of the incident in detail, and
suggests possible implications concerning complex, safety-
critical, fault-tolerant software.

1 Introduction

Software plays an increasingly significant role in avionics. The
rapid growth of this technology provides manufacturers and
operators with a degree of flexibility that would not otherwise be
possible. The introduction of software systems also enables
rapid reconfiguration of key applications during both
development and the operational life of an airframe. This
flexibility also enables a high degree of fault tolerance.
Software systems may detect potential failures and avert
mishaps through the use of redundancy. However, the
introduction of new technologies often creates new hazards.
This paper describes how the development of fault tolerant
software can mask previous failures. Redundant systems have
enabled aircraft to continue in operation for many months after
an initial fault has occurred. If uncorrected, this creates the
latent conditions for an accident when the software cannot
respond to further system failures.

To illustrate some of the potential dangers associated with fault
tolerant software, we use a case study involving an in-flight
mishap on a Boeing 777-200. During the climb after take-off
the crew observed a LOW AIRSPEED advisory and a slip/skid
indication. Their Primary Flight Display then indicated that
they were simultaneously approaching a stall and the aircraft’s
overspeed limit. Such conflicting indications can undermine the
crews’ confidence in their systems. The aircraft pitched up and
systems began to indicate a decrease in airspeed from 270 to 158
knots. Eventually the flight crew regained control of the aircraft,

and the aircraft returned to Perth. The flight data recorder
indicated unusual acceleration values for all three planes of
movement [1]. These values were provided by the Air Data
Inertial Reference Unit and affected a range of aircraft systems
during both automated and manual flight. This paper describes
the way in which software contributed to the potential accident.
A further motivation for studying this incident is that near
misses provide an opportunity to learn about the causes of
potential accidents before there is any loss of life.

The flexibility of avionics software has also increased the
complexity of avionics. This presents considerable barriers to
accident investigators who must piece together the complex
events and contributory factors that led towards an adverse
event. For this reason, we use Events and Causal Factors (ECF)
diagrams to provide an overview of the case study incident.
This approach helps to map key areas of the many pages of text
that are used in the official report [3]. ECF diagrams were
originally developed by the US Department of Energy. It is
important to stress, however, that this is only one of several
different notations that might be used to provide a similar
overview [4]. The focus here is less on the technique used for
the analysis than on the role that ‘fault tolerant’ software played
in the causes of a potential accident.

(3) Power cycle on ADIRU
(occurs each occasion aircraft

electrical system is shutdown and
restarted)

(3) June 2001, accelerometer #5
fails with erroneous high output

values, Air Data Inertial
Reference Unit (ADIRU)

disregards accelerometer output
values.

(3) August 2005, accelerometer
#6 fails, latent software anomaly
allows use of previously failed

accelerometer #5 output

9M-MRG upset
event.

Figure 1: High-Level Overview of the Case Study

Incident

2 Overview of the Incident

Figure 1 illustrates the immediate events that contributed to the
case study incident. The focus here is not on identifying a cause

for the accident but simply on establishing a more detailed
timeline for the sketch that was presented in the introduction.
The number that is used to label each box in the ECF diagram
refers to the page on which that event is described in the
Australian Transport Safety Bureau’s official report [1]. This
enables readers to use these diagrams to support the more
detailed analyses of the textual documentation. The diamond
indicates the eventual outcome of the events that lead to it.

As can be seen, the initial events may be traced back more than
four years before the mishap. Accelerometer number 5 failed
with erroneous high output values. The Air Data Inertial
Reference Unit (ADIRU) software was programmed to disregard
such output from the accelerometer and, instead, to rely on
values from backup systems. The initial failure was, however,
masked following a restart of the ADIRU. This created a
vulnerability that was compounded by a latent software error –
or bug. Following the failure of another accelerometer the
ADIRU could revert to accepting input from the accelerometer
that had initially failed and been excluded from its computations.
This scenario contributed to the failure that is described in the
opening sections of the paper.

3 Air Data Inertial Reference Unit Architecture

Figure 2 provides an overview of the architecture that supports
the Air Data Inertial Reference Unit (ADIRU) on the B777. A
core concept was to exploit redundancy as a means of achieving
fault tolerance. The unit was divided into seven fault
containment modules or areas. Each of these was physically and
electrically isolated from the others. The intention was that the
aircraft could have a fault in any of the modules and still remain
serviceable. This feature would enable operators to continue
flying until the number of fault-free modules fell below a
minimum specified by the component manufacturer. This fault
tolerance supported lower operating costs, for instance, by
reducing the potential disruption to aircraft operations from
unscheduled maintenance. In particular, the ADIRU used a
fault containment module to analyze data from accelerometers
and gyros before passing them through the ARINC 629 units to
navigation and flight control systems.

Gyro Fault Containment Area
(FCA) with 6 Gyro Fault

Contaimnent Modules (FCMs)

Accelerometer FCA
with 6 Accelerometer

FCMs

 Power Supply FCA
with 3 Power Supply

FCMs

Processor Processor Processor Processor

Processor FCA with 4 Processor FCMs

ARINC 629 FCA, LEFT 2
ARINC 629 FCMs

ARINC 629 FCA, Centre
2 ARINC 629 FCMs

ARINC 629 FCA, Right
2 ARINC 629 FCMs

(5) Other Units

Figure 2: Air Data Inertial Reference Unit (ADIRU)

Architecture (ATSB, 2007, p.5)

4 Redundancy & Fault Masking

Figure 3 builds on the previous analysis and illustrates how the
architecture and design objectives for the ADIRU software
contributed to the case study incident. As in Figure 1, the
rectangles represent events leading to the mishap and page
numbers in the ATSB report are indicated in parentheses. The
ovals denote contributory factors. These provide a short-hand
representation for many individual events that together create the
preconditions for an incident. For example, many aspects of this
mishap can be traced back to the initial aim of reducing
operating costs and disruption to aircraft scheduling. This
created a condition in which designers developed fault
containment areas or modules that enabled operators to defer
maintenance until the number of faulty Fault Containment Units
exceeded specified tolerances.

The left–hand chain of events captures elements of the ECF
diagram shown in Figure 1; including the initial failure of
accelerometer number 5 in 2001 and the subsequent failure of
number 6 in 2005 that triggered the mishap. As can be seen,
however, Figure 3 significantly extends the analysis in the
previous diagram. For example, it refers to the Secondary
Attitude Air Data Reference Unit (SAARU). This extends the
concepts of redundancy and of defence in depth by providing an
alternate source of attitude, heading and air data to the ADIRU.
A comparison was made between the output of the ADIRU and
the SAARU during the mishap and this helped to mitigate the
impact of the incorrect values from the ADIRU. This illustrates
an important point in this paper – the aim is not to undermine the
use of fault tolerance and redundancy but instead to demonstrate
the particular dangers of software masking component failures
both to operational crews and maintenance teams. In this case,
it can be argued that the redundant SAARU provided sufficient
control for the pilot to avert more serious consequences from the
ADIRU faults.

The right side of Figure 3 looks more closely at maintenance
issues in the case study incident. The initial failure of
accelerometer number 5 in 2001 triggered a maintenance
message on the on-board maintenance computer; this was known
as an ADIRU MM 34-20010 event. Such messages could be
read by maintenance teams using a ground-based terminal but
were not directly visible to the crew. Some ADIRU events can,
however, be displayed in-flight on the Engine Indication and
Crew Alerting System (EICAS). If such an in-flight warning
occurs, then the ADIRU must be replaced with a serviceable unit
within three days. As can be seen in Figure 3, the crew did not
receive such a warning following the 2001 accelerometer failure
and so the ADIRU was not replaced. However, the ECF
diagram also denotes that different operators implemented
different practices and risk mitigation strategies following such
MM events. The aircraft manufacturer noted that: “the ADIRU
can be dispatched with MM 34-20010 present until such time
that the operator deems it prudent to remove the ADIRU to
avoid a schedule interruption due to occurrence of the ADIRU
Status message. The decision to remove the ADIRU based on
the presence of MM 34-20010 only is made by the operators on
an economic basis, not a safety basis” [1, p.8].

(5) FCAs allow
operators to defer maintenance until
number of faulty Fault Containment

Units exceed tolerances.

(5) ADIRU is fault
 tolerant and could continue with
failure in any Fault Containment

Area.

(5) Pressures to reduce
 operating costs and disruption to

aircraft scheduling.

(3) 1 August 2005, accelerometer
#6 fails, latent software anomaly
allows use of previously failed

accelerometer #5 output

(5) Acceleration values from ADIRU
used by primary flight computer

after comparison with values from
Secondary Air Data Reference Unit

(5) Comparison function reduces
severity of pitch motion on aircraft at

start of incident

(5) SAARU uses
same inputs as ADIRU

but with its own
gyroscopes and
accelerometers.

(3) June 2001, accelerometer
#5 fails with erroneous high

output values, Air Data Inertial
Reference Unit (ADIRU)
disregards accelerometer

output values.
(6) Faults on ADIRU generate maintenance

message on on-board maintenance
computer (MM 34-20010 event).

(6) Maintenance message
visible to crew on Engine

Indication and Crew Alerting
System display

(6) Maintenance messages visible
to maintenance teams using

maintenance access terminals.

(6) No requirement
to replace ADIRU

until three days after
message appears on

EICAS.

(6) Crew not provided with
detailed information on nature

of the fault.

(8) ADIRU not replaced.
(8) Operating
practices vary

according to dispatch
deviation guides.

(3) Power cycle on ADIRU (occurs
each occasion aircraft electrical

system is shutdown and restarted)

(7) January 2005 LNAV
or VNAV data invalid

logged on maintenance
computer, ADIRU reset

but no faults found.

Figure 3: Maintenance Not Required to Replace Fault Tolerant ADIRU

(3) June 2001,
accelerometer #5 fails
with erroneous high

output values, Air Data
Inertial Reference Unit

(ADIRU) disregards
accelerometer output

values.

(3) Power cycle on ADIRU
(occurs each occasion

aircraft electrical system is
shutdown and restarted)

(7) Jan 2005, OPS
version -07 loaded

onto ADIRU

(8) There is a bug in ADIRU
OPS up to and including v-07

so that after a power cycle
ADIRU will not recognise that

accelerometer number 5 is
unserviceable.

(6) Faults on ADIRU
generate maintenance
message on on-board
maintenance computer
(MM 34-20010 event).

(8) Memory recording
maintenance message
not checked by ADIRU

during start-up
sequence.

(8) Software error
undetected during

original
certification.

(8) Software error
masked by other
functions in OPS

v-03. (8) Need to improve shop
repair capability leads to
flaw being exposed again

in OPS v-04.

(8) From OPS v-04 changes to
Fault Detection and Isolation
software to detect transient
faults and allow return to

service if no further problems

(5) FCAs allow
operators to defer

maintenance until number
of faulty Fault

Containment Units
exceed tolerances.

(5) Pressures to
reduce operating costs and

disruption to aircraft
scheduling.

(3) 1 August 2005,
accelerometer #6 fails

(3) Data from failed accelerometer
#5 can be used after #6 fails

(9) Mid-value select moderates
anomalous output from ADIRU even

though it was considered unnecessary
during analysis and testing!

Figure 4: Software Propagates Failure and Mitigates Adverse Effects

5 Software Architecture and Fault Masking

Figure 4 focuses on the software issues that contributed to the in-
flight mishap. As before, many of the particular events can be
traced back to pressures to reduce operating costs and avoid
disruption to aircraft scheduling. This created the Fault

Containment Area architecture that enabled maintenance to be
deferred. It also led to software requirements for the ADIRU so
that the system would check the status of critical components but
allow the unit to continue operation if minimum criteria for the
availability of FCAs were met. The implementation of this
software requirement was flawed in early versions of the OPS –

software. However, up to version v-03 this problem was
mitigated by additional checks in other areas of the application.
A renewed requirement to improve shop repair capability led to
the flaw being exposed again in OPS v-04. The OPS software
up to and including v-07, therefore, contained a bug such that
after a power cycle the ADIRU would not recognise that
accelerometer number 5 was unserviceable.

Figure 4 also denotes how a maintenance message was generated
following the 2001 fault on accelerometer number 5. However,
the fault status was not checked by the ADIRU following a
power up for the reasons presented previously. This

combination of events led to use of data from the failed
accelerometer when a further fault was detected in 2005 with
accelerometer number 6. Again, however, this incident reveals
how the ‘defence in depth’ techniques of modern avionics
helped to mitigate the potential consequences of this bug. The
ADIRU software had been designed to pass on mid-range values
if components provided data that varied between two
implausible extremes. It is important to stress that designers
may underestimate the value of the defences they create. The
bottom event in Figure 4 records that this additional safety
feature was considered to be superfluous during testing and
analysis of the ADIRU.

(5) FCAs allow
operators to defer maintenance until
number of faulty Fault Containment

Units exceed tolerances.

(5) ADIRU is fall tolerant and
will continue to work with

failure in any Fault
Containment Area.

(5) Pressures to
reduce operating costs and

disruption to aircraft scheduling.

(3) June 2001, accelerometer #5 fails
with erroneous high output values, Air
Data Inertial Reference Unit (ADIRU)

disregards accelerometer output
values.

(11) No checklist provided
to B777 crew similar to

UNRELIABLE AIRSPEED
on other aircraft types.

(3) Power cycle on ADIRU (occurs
each occasion aircraft electrical

system is shutdown and restarted)

(3) 1 August 2005, accelerometer #6
fails

(3) Data from failed accelerometer #5
can be used after #6 fails

(11) Desire to minimise
number of checklists and

crew intervention.

(11) QRH section on
 flight AIRSPEED LOW

warning on EICAS but does not
provide procedures

(15) QRH cannot
and should not support all
possible adverse events.

(15) Crew faced with incorrect
underspeed then overspeed condition
warnings as well as slip/skid indicator

for full right indication.

(15) Crew did not
 know which instruments could be trusted

and which could not.

(15) Crew faced with
correct indications
for primary flight

display pitch and roll
values, standby
equipment also

unaffected by fault.

Figure 5: Fault-Masking Undermines Crew Interaction

6 Human Factors Issues

Figure 5 illustrates how the impact of software bugs propagates
beyond the embedded systems of modern avionics to affect crew
interaction. The ECF diagram illustrates how the silent masking
of redundant failures undermined the ability of human operators
to diagnose and respond to the problems that confronted them.
Page 15 of the ATSB report describes how the crew was faced
with incorrect underspeed warnings, followed by overspeed
warnings, as well as a full right slip/skid indication following the
failure of accelerometer number 6. At the same time, correct
indications were presented for the pitch and roll values on the
primary flight display. Standby equipment was also unaffected
by the fault. The crew were, therefore, unsure which of the
instruments to trust. Their uncertainty was exacerbated by
design decisions that stemmed from the underlying philosophy
of masking redundant failures during continued operations,
mentioned in previous sections. Figure 5 records that previous
aircraft types had provided checklists for UNRELIABLE
AIRSPEED in the crews’ Quick Reference Handbooks (QRH).
However, the redundancy implemented by the B777 software
systems implied that the crew should never be faced with such
an indication. The system was designed to ensure that
unreliable input from key components should automatically

trigger a transition to redundant systems without any
intervention from the crew. It was reasonable, therefore, to argue
that this section should be dropped from the QRH. Crews often
complain when documentation is unnecessarily verbose or
difficult to navigate. It was possible for multiple failures to
trigger a NAV AIR DATA SYS message on the EICAS. The
QRH then referred the crew to an unreliable airspeed table.
However, this particular warning was not triggered during the
case study incident. The key point here is that the problems
facing the crew were exacerbated by the decision to mask
information that designers did not consider would be needed by
the crew. However, the circumstances of this mishap reiterate
the importance of providing some degree of visibility to the crew
when it is difficult or impossible to guarantee the resilience of
fault tolerant systems [6].

Figure 6 continues the analysis of crew interaction in the
aftermath of the 2005 auto throttle failure. As mentioned, the
pilot was faced with a situation that designers had not considered
to be possible. The auto throttle system remained active and the
underspeed/overspeed warnings suggested that the malfunction
may have been related to these functions. In consequence, the
pilot attempted to disconnect the autothrottle by pressing the
thrust lever disconnect switch and pushing the autothrottle

engage switch to toggle it off. However, these attempts were
ineffective because the crew failed to switch the autothrottle arm
switch from ARMED to OFF. In consequence, the autothrottle
continued to increase thrust in response to the low-speed data
that was erroneously being supplied from the ADIRU and the
fault accelerometer. The interaction difficulties faced by the
aircrew when attempting to disarm the autothrottle are typical of
the ways in which the stress imposed on a human operator by an
initial failure can trigger further mistakes. These errors serve to

compound the problems created by an initial mishap. Figure 6
illustrates how the crew now not only had to understand the
reasons for the erroneous and inconsistent readings from their
instrumentation, they now had to find an explanation for their
failure to disarm the auto throttle. Without additional support
from documentation, such as the QRH, it can be difficult for any
crew to avoid a gradual loss of situational awareness through
apparent interactions between such compound failures.

(2) Autothrottle increases thrust of
engines in response to warning.

(15) Pilot in command attempts to
disconnect autothrottle by pressing

thrust lever disconnect switch

(15) Pilot in command attempts to
disconnect autothrottle by pushing

autothrottle engage switch

(15) Autothrottle remains
active

(15) Crew must
 deselect autothrottle arm
switched from ARMED to

OFF position

Figure 6: Auto Throttle Uncertainty Further Undermines Situation Awareness

(8) There is a bug in ADIRU
OPS up to an including v-07 so
that after a power cycle ADIRU

will not recognise that
accelerometer number 5 is

unserviceable.

(8) Software error
undetected during

original certification.

(8) Need to improve shop
repair capability leads to
flaw being exposed again

in OPS v-04.

(8) From OPS v-04 changes to
Fault Detection and Isolation
software to detect transient
faults and allow return to

service if no further problems

(5) FCAs allow
operators to defer

maintenance until number
of faulty Fault

Containment Units
exceed tolerances.

(5) Pressures to
reduce operating costs and

disruption to aircraft
scheduling. (11)DO-178B and

European ED-12B
published

(11) Joint working
group created.

(11)RTCA
 committee created to

look at airborne systems
software development

(11) EOCA
committee created to

look at airborne
systems software

development

(12) B777 ADIRU
OPS DO-178B

compliant

(12) During testing
precise circumstances

of this incident were not
considered.

(Ass) Risk based
 testing unlikely to uncover an
accelerometer failure resulting

in high output followed by
power cycle followed by
second high magnitude

accelerometer failure while
high failed value still on first

accelerometer.

(15) Testing
conducted against

requirements
provided for in initial

design

Figure 7: Process-Based Certification and the Selection of Test Cases

7 Certification Issues

Figure 7 illustrates some of the certification-related issues that
were raised by the case study incident. It notes that DO-178B
[7] and the European ED-12B equivalent were derived from
joint working groups within the RTCA and the predecessor of
the European Organisation for Civil Aviation Equipment. It also
shows that the ADIRU OPS software was DO-178B compliant.
Even so, testing failed to consider the precise circumstances of
the failure that was revealed in this incident. The diagram also
records an assumption that risk-based testing was unlikely to
uncover an accelerometer failure resulting in high output,
followed by power cycle, followed by a second high magnitude

accelerometer failure while the high failed value was still on first
accelerometer. Although the consequences of such a scenario
were potentially severe, such a contingency might arguably have
been considered too unlikely to be considered in detail during
system testing. It is, however, difficult for the ATSB and other
investigatory organisations to confirm such analyses without
access to detailed design process information that is likely to be
commercially sensitive.

This incident reiterates the importance of considering the impact
of multiple component faults in the requirements that are used to
guide the development of fault tolerant software, especially
where fault-masking techniques shield operational personnel

from additional complexity between maintenance cycles. This
might seem like a very specific issue. However, the incident
reveals important lessons for engineers, which highlights the
more general need for them to read accident and incident reports
[2]. It was fortunate that in the case study incident, the crew
were able to land their aircraft. However, unless software
engineers are made aware of the circumstances surrounding this
and similar incidents, there is a danger that future avionics
software will continue to suffer from the flaws of previous
systems.

This incident illustrates the strengths and the weaknesses of
current certification standards for commercial systems
containing aviation software. The ADIRU software had been
tested and developed to the standard required at the time of
certification. DO-178B, in common with most recent software
standards across the safety-critical industries, focuses on
development processes rather than the certification of particular
lines of code. In particular, it contains requirements to ensure
the testing of delivered code against the original safety
requirements identified for that software. The level of testing is
partly determined by the risks that are to be mitigated by the
functionality of the code. However, the ADIRU testing “was
limited to the original specification and requirements of the
component” [1, p. 16]. These did not consider the particular
scenario that arose during the incident. This has important
implications for process based standards such as DO-178B. In
previous generations of product based specifications, the failure
of a particular system was symptomatic of potential flaws in that
particular component. However, in process based certification
the failure of a system implies that there may be wider flaws in
the systems developed under that process. It is for this reason
that the manufacturer responded to the incident not simply by
correcting for the particular combination of accelerometer
failures that characterized this mishap, but by also reviewing the
handling of a wide range of potential multiple hardware failures.

8 Conclusions and Further Work

This paper has described how fault tolerant software can
automatically redirect input from failed components to
redundant resources, providing important benefits. In
particular, fault-tolerance supports the continued provision of
critical services and can be used to extend the interval between
maintenance procedures. Fault masking implies that information
about the reconfiguration of redundant resources may be hidden
from the crew and from maintenance teams during the interval
between these procedures. This offers further benefits. Fault
masking will reduce the workload of the flight crew, by reducing
the number of checklists that must be consulted in abnormal
situations. Maintenance teams can focus on those areas that
require immediate attention. By postponing other items until
major service intervals they can reduce the time pressures that
often complicate unscheduled maintenance procedures.

However, the benefits of fault masking in redundant systems
also create new hazards. When service teams fail to identify
underlying failures during major maintenance procedures,
aircraft may continue to be operated without the additional

assurance provided by redundancy. The potential consequences
of this hazard are compounded by the effects of fault masking
for operational staff. They will not be aware of the underlying
faults that affect their application. When subsequent failures
finally compromise the use of redundant systems, flight crews
will be faced with unanticipated problems. The very fact that
the initial fault has been masked implies that any secondary
failure will also not be covered in training and documentation
that usually support their interaction.

This paper is part of wider initiatives that are intended to assess
the impact of what can be called ‘degraded modes of operation’
on safety-critical applications. Degraded modes of operation
refer to situations in which efforts are made to maintain levels of
service in the presence of component failures. In other
industries, including Air Traffic Management, these can include
ad hoc workarounds as staff learn to avoid the constraints that
might otherwise be placed on them by faulty equipment [5]. The
case study described in this paper extends our analysis to
consider the impact that fault tolerant software can have upon
complex applications during degraded modes of operation. By
masking previous failures, maintenance staff and operators may
not recognize the gradual erosion of the safety mechanisms that
are intended to support normal operation.

References
[1] Australian Transport Safety Bureau. In-Flight Upset Event 240Km
North-West of Perth, WA, Boeing Company 777-2000, 9M-MRG.
Aviation Occurrence Report 200503722, Canberra, Australia, 2007.

[2] C. M. Holloway and C.W. Johnson. “Why System Safety
Professionals Should Read Accident Reports.” In T. Kelly (ed.), The
First IET International Conference on System Safety, Institute of
Engineering and Technology, Savoy Place, London, 325-331, 6-8th
June 2006, ISBN 0-86341-646-2, 2006.

[3] C.W. Johnson. Failure in Safety-Critical Systems: A Handbook of
Accident and Incident Reporting, University of Glasgow Press,
Glasgow, Scotland, ISBN 0-85261-784-4, 2003.

[4] C.W. Johnson and C.M. Holloway. “A Survey of Causation in
Mishap Logics.” Reliability Engineering and Systems Safety (80) 3:271-
291, 2003.

[5] C.W. Johnson and C. Shea. “The Contribution of Degraded Modes
to Accidents in the US, UK and Australian Rail Industries.” Procs of
2007 Int. Systems Safety Society Conf., Baltimore, USA.

[6] D.A. Norman. “The ‘Problem’ with Automation: Inappropriate
Feedback and Interaction Not ‘Overautomation’.” In D.E. Broadbent, J.
Reason and A. Baddeley (eds.) Human Factors in Hazardous
Situations, pages 137-145, Clarendon Press, Oxford, UK, 1990.

[7] RTCA Inc.. "Software Considerations in Airborne Systems and
Equipment Certification." RTCA/DO-178B, Washington, D.C. 1992.

